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SUMMARY 

A technique is presented for calculating the transient flow in high pressure transportation systems where both simple 
systems (without compressors) and systems with compressors have been taken into consideration. A partial 
differential equation characterizing the dynamic gas flow through a pipeline and a numerical scheme for its solution 
are considered. A method of computing node pressures is also characterized. 
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INTRODUCTION 

A gas network is in the transient state when the values of quantities characterizing the supply 
of gas to the system or its consumption are functions of time. Simulation of transient flow in 
gas networks is necessary both for design and for control. Dynamic simulation of a gas 
network requires a suitable mathematical model and a numerical method for its solution. An 
explicit model of a dynamic, physical ‘real-world’ system, such as gas flowing through a 
pipeline, is a set of partial differential equations written on the basis of: 

(a) the principle of conservation of mass 
(b) the equation of state 
(c) the equation of conservation of momentum. 

By assuming given intervals for quantitative and qualitative changes of particular quantities, 
the final equations which define the phenomenon exactly can be approximated by simpler 
equations. 

Since a sophisticated model causes difficulties in simulating a pipeline system, it must be 
stripped of its complexities. The superficialities should be deleted, while maintaining the 
model concepts, which are pragmatically and operationally defined. The numerical solution 
of the partial differential equations which characterize a dynamic model of a network takes 
much computation time. The problem is to find, for a given mathematical model of a pipeline, 
a numerical method which meets the criteria of accuracy and relatively small computation 
time. 

MODEL ANALYSIS 

In the development of the explicit mathematical model for the dynamics of gas flowing 
through a pipeline, it was assumed that: 

(i) the flow is turbulent 
(ii) the gas process is isothermal 
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(iii) the pipeline is rectilinear (i.e. the curvature radii are great) 
(iv) the pipeline cross-section area is constant. 

These assumptions are used by Czernyj' in the explicit description of the gas dynamics in a 
pipeline by means of the following set of non-linear partial differential equations. 

A a -9- - w+- pw2-t- ((I+ p)pw')+ gp sin a 
ax at 20 ax 

where 

c is the speed of sound in gas, mls 
w = w(x, t )  is the average gas velocity (averaged over cross-section area) in pipeline, m/s 
p = p(x, t )  is the average gas density (averaged over cross-section area) in pipeline, kg/m3 
g = 9.81 is the acceleration due to gravity, mls' 
a(") is the angle of pipeline inclination with respect to a horizontal plane 
A is the friction coefficient for fluid in the pipeline 
D is the pipeline diameter, m 
p = p ( x ,  t )  is the average gas pressure (averaged over cross-section area) in pipeline, Pa 
p is the correction of Coriolis to allow for a non-uniform velocity profile in the stream. 

The constituent factors - - and pg sin a define the gas inertia and friction force of 
at  ' 2 0  

gravity, respectively. The factor (1 + 0)pw' is determined by the flowing-gas dynamic 
pressure. In practice, it is assumed that the pipelines are run horizontally; thus pg sin a = 0 
and because p i 0  for the turbulent flows, the set of equations (1) may be rewritten as 

By integrating the first of equations (2) between x = 0 and x = L (where L is the length of 
the pipe) and multiplying by dx we get 

By computing the values 
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we can confirm whether it is possible to  reduce the set of equations (2) to a simpler form. 

dx may be transformed to the following form: The term I: 
7TD2 

L where S = -  
average 4 

Next 

averaee At A t  

where an asterisk indicates values under N" conditions, i.e. 273°K and 0.1 MPa, and 

Qm is the mass flow (kg/s) 
Qv is the volume flow (m3/s) 
At is the discretization time for the function Q:(L, t) (Figure 1) (in the analysed case 

At=Zh) 

It was assumed that AG: = AQ$max. Using a boundary condition (Figure 1) we get: 

A a,*,, = 0.15 a,*,, 
The values of the gas velocity and gas density are calculated respectively from the formulae 

Q%*T 
SpT* 

w=- 

(i) For L = lo4 m, po = 4 MPa, D = 0.7 m, pL = 3-8 MPa, (where po is the pressure at x = 0 
and pL is the pressure at x = L) and Q: = 14-22 m31s 

6, = 0.587 per cent 
8, = 171.2 per cent 
6, = 0.036 per cent 

(ii) For L = 5 x lo4 m, po = 5 MPa, D = 0.7 m, pL = 4.7 MPa and Q$ = 90.28 m3/s 

a1 = 0.513 per cent 
S , =  162.3 per cent 
S 3  = 0.021 per cent 

0: (m3 I s I 

go I(/ J 

time 

2 4 6 9 TO f2 16 f6 18 2 0  22 2L (hrs 1 
Figure 1. Changes of flow with time (boundary condition) 
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(iii) For L = lo5 m, po = 5 MPa, D = 0.7 m, pL= 4.3 MPa and Q: = 94.44 m3/s 

6, = 0-380 per cent 

6, = 151.2 per cent 

8, = 0.019 per cent 

By comparing the values of al, 6” and 6, we see that we can neglect terms 

Finally we obtain 

Using the relations 

p = c2p 

pQ,= Q,= p*Q: 

we transform the set of equations (4) into 

-- a Q t  - - s d p  J 
ax p * c ” a t  

By differentiating the first equation with respect to x and substituting the second equation 
into the first we get 

where 

Because it was assumed that QJx, t) is averaged along the pipe for each interval of time At, 
equation (6) is linear with respect to the square of pressure for each interval At. It is possible 
to show in another way that the term a(pw”)Iax is small when compared to the other terms 
and may be discarded. It is possible to reformulate the first equation of set (2) in the 
following way: 

- 

Next 
a a(Pw) APW2 -- [p(c”+ w”)] = - +- 

ax at 2 0  
Thus 

(7) 



TRANSIENT GAS FLOWS IN NETWORKS 17 

Taking into account the fact that the highest flow velocity is not higher than 20m/s and 
assuming c = 300 mls, we can approximate the value of the expression 

W 2  
1 + 7 = 1.00444 1 

C 

to unity. Thus 

Next the rightness of neglecting the component a(pw)/at will be estimated by using a 
comparison of the results obtained from the following set of equations: 

-- _ -  aQ: 
at 

_-  _ -  aP 
a t  

1 S ap k 2 p *  Q*2 ----- 
p*ax 2 ~ s  p 

p*c2 aQ$ 
s ax 
-- 

which satisfy the set of equations (2) without term a(pw2)/8x, with results which were 
obtained using equation (6) for the same boundary conditions. 

It was assumed that at the initial moment t = O  we have steady-state flow along the 
pipeline; thus 

Q:(x, 0)  = Q:.o = const 

It was assumed that the pipeline under investigation was supplied from a compressor 
station (x = 0) and was loaded with a receiver (x = L )  having a load Q:(t) varying in time. 
It was assumed that by appropriately changing the capacity of the compressor station (changing 
the number of machines operating simultaneously and/or operating parameters of any of 
them), the value of the pressure at the beginning of the pipeline is kept invariant and equal 
to  the allowable maximum. Thus 

To determine the form of the function Q:(L, t )  a statistical analysis was performed for the 
24-hour reports covering a period of a year (the reports contained the values of pressures 
and flow rates for the selected points in the pipeline system). Next, a most probable flow 
change at the pipeline end was defined. The solution, Q:(L, t )  is a sampling function with a 
sampling period of A t  = 2 h, the time interval being t E [0,24]. While using this function as a 
boundary condition it was assumed that the function is linear in the intervals under 
consideration (Figure 1). 

Equations (6) and (9) were solved using the method of lines. Each of the partial 
differential equations was replaced by a set of ordinary differential equations. Assuming 
boundary conditions of type (10) we get: 

(a) for equation (6) 
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(b) for equation (9) 

where n = 1,2, .  . . , N (N is the number of discrete points chosen). For equation (6) it is 
necessary to determine value of pressure pN using the boundary condition 

Q$,N = f (t) (16) 

For this reason the steady-state flow was assumed along the last pipeline discretization 
section, i.e. between XN-1 and x,. Thus 

where 

PN-1, pN is expressed in MPa and AxN-~,N, DN-1 .N in m. 
Finally 

2 ( k + l ) =  Z k )  *2(k+l )  PN PN-1 -RN-I,NQV,N 

where k is the number of time levels. The discrete formulae of equations (6) and (9) were 
solved by means of the Runge-Kutta fourth order method according to the following 
relation : 

~ ( t  + At) = X( t )  + $K1+ $(K, + KJ + $K4 (19) 

where 

Ki = f[x(t>I A t  
K2 = f[x(t) +$K1] A t  
K3 = f[x(t) +$K2] A t  

K4 = f[x(t) + K3] At 

For equations (6) and (9) x = p2 and x = p, respectively. The investigations have shown that 
the pipeline dynamics should be defined by means of a linear equation with respect to p2 
(equation (6)). 

In Figure 2 there are shown changes of pressure p(L, t )  for two models of a pipeline with 
L = lo5 m, D = 0-7 m. It was assumed that p(0, t )  = 5-066 MPa = const and Q:(L, t )  is as in 
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t i m e  
1 -- 

2 I 6 8 10 12 14 16 16 20 22 24 (hn) 

Figure 2. Changes of pressure for two models of a pipeline: L = lo5 rn, D -- 0.7 rn 

Figure 1. The following was obtained: 

a, = max (T) ' ~ a - p b '  100 per cent = 1-2 per cent 
I 

where pa, Pb are the values of the pressure in discrete time computed using equations (6) and 
(9), respectively. 

Investigations which were made for L = 5 X lo4 m, and L = lo4 m (D  = 0.7 m) have shown 
that 

a, < 3.0 per cent 

In each case the computation time was smaller by about 20 per cent for model (6) than for 
model (9). The comparison between the two above models was also made in conditions of 
very rapid changes of load; Qz(L, t ) ;  p(L, t )  for the pipeline was computed with L = lo4 m, 
D = 0.6 m and Q:(L, t )  as in Figure 3. It was assumed that p(0, t )  = 4.901 MPa = const. 
Results are shown in Figure 4. Even in these conditions ao<4 per cent this thus confirms the 
correctness of our choosing model (6)-this equation being a compromise between explicit- 
ness and the calculation time that is necessary for its solution. 
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Figure 4. Changes of pressure for two models of a pipeline: L = lo4 m, D = 0.6 m 

METHOD OF SOLUTION OF TRANSIENT FLOW EQUATION 

Investigations' have shown that the best numerical scheme which meets the criteria of 
accuracy and relatively small computation time for equation (6) is the scheme shown in 
Figure 5 .  Using the above scheme we transform equation (6) into 

Equation (21) can be written in matrix form as 
Bpk+' = rRk+l + Cpk 

1 n 
k - 1  k k +  1 

Figure 5. Implicit scheme, unrestricted stability 
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where 

dim P = dim R = ( N -  1) x 1 
N = number of discrete points chosen 

a At 
I=- 

(Ax)” 

where A t  is the discrete time section and Ax the discrete section 

1+2r, -r, 0, . . . . . . . . . . . . . . . . .  0 
-r, 1+2r,  -r, 0, . . . . . . . . . . . . .  0 

0 . . . . . . . . . . . . . .  0, -r,  1+2r, - r  
0 . . . . . . . . . . . . . . . . . .  0, -r,  1+2r 

B =  ........................... 

Apk+l  = b (23)  

I 
C = I (unit matrix) 

For an implicit scheme the unknown values of P at any time level are found by solving a set 
of algebraic equations: 

Equations (22) take a tridiagonal form (elements occur only on the main diagonal and on 
one subdiagonal above and below). This system of equations was solved using the Thomas 
a l g ~ r i t h m . ~  

METHOD OF COMPUTATION OF NODE PRESSURES 

Graph theory has been used to represent the network structure. The graph nodes represent 
the joints between pipes, whereas the edges represent the pipelines. The values 01 the 
pressures at discrete points along the pipe from 1 to  N-1 were computed using the 
numerical scheme (Figure 5). The values of node pressures were determined using the 
equation : 

where 

QmGl is the demand at the jth node (mass flow) 
m is the mass of gas in the node 
n is the number of pipes connected to the node 
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Qm(ii) is the mass flow into or out of the jth node in the ith pipe connected to the jth 

B, = 1 if the flow Qm(ii) is into the jth node 
B, = -1 if the flow Qmtii) is out of the jth node 

node 

Next: 
dm dVp Vdp 
dt dt  c 2 d t  
-=-=-- 

where p is the gas density and V is the volume 
reformulate equation (24) in the following form 

(25) 

at the node. Using (25) we may 

Seeing that 
dpj p;+ ' -p ;  
-2. 

dt A t  
we can express equation (26) as 

where 
Q k + l  = Q*(k+l)p* 

*(k+l) * 
m(e) 4 1 1 )  

Q!Zj;=Q,w P 

We assume that we have steady state flow along each element A% 
so 

The equation 
f(p;+l) = 0 

adjacent to the jth node. 

(28) 

was solved for pr+l using the bisection method? This is slower than the Newton-Raphson 
method, but gives correct results even if the initial value is far away from the correct 
solution. 

THE RESULTS OF INVESTIGATIONS 

The algorithm for simulating transient flow in a gas network calculates pressures at nodes 
and at discrete points along the pipes at each subsequent time t + At. The latter pressures are 
calculated using equation (21) and the former pressures are then calculated using the 
bisection method. The computational cycle is repeated TlAt times. 

Simulation of the dynamic gas flow has been conducted for three networks with the 
following structures: 

(i) 6 nodes, 8 edges 
(ii) 22 nodes, 36 edges 
(iii) 50 nodes, 78 edges. 

D = 0 * 5 m ,  LE[100m; 14x104m] 
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It was assumed that the loads in each node are discrete periodic functions with a discrete 
interval A t  = 2 h, a period T =  24 h and linear in each interval. Nodal pressures and pressures 
at discrete points along each pipe were computed for given pressure values at the sources. 
The simulation period was 72 h. The initial investigation verified that this period was ample 
enough for the model to ‘forget’ the initial conditions. Gas networks were simulated for 
A t  = 600 s and N = 4 using a CDC 7600 computer. The results were 

(a) for 6 nodes: 1.824s 
(b) for 22 nodes: 8.853s 
(c) for 50 nodes: 19.389s. 

SIMULATION OF TRANSIENT GAS FLOWS IN NETWORKS 
WITH COMPRESSORS 

The basic control elements in a high pressure gas pipeline network are compressor stations. 
The jth compressor raises the suction pressure psi to a higher discharge pressure pdj. This 
higher outlet pressure then provides a pressure gradient maintaining the flow in the next 
pipeline segment. Under the assumption of adiabatic compression, the horsepower required 
to maintain a specified compression ratio (Pdjlpsj) for a specified flow Qj is given by 

(mij = A,Q[ (b),i Psi - B j ]  

where 

Pdj is the discharge pressure for the jth compressor 
psi is the suction pressure for the jth compressor 
Qi is the flow through the jth compressor 
(HP)i is the horsepower required to achieve compression ratio (p,/p,) and flow Qj at 

compressor j 

and Aj, Bj, Rj are constants for the jth compressor. 
The most important variables used in network simulation and associated with the compres- 

sor are the suction and discharge pressures and the flow through the compressor. Usually one 
of these quantities is being controlled to a given set value. In practice the outlet pressures or 
flow rates of the compressors are often controlled. It was assumed for simulation of transient 
gas flows in networks with compressors that 

v=v,uv* (30) 

where V is the set of graph nodes, V, is the subset of main graph nodes, and V2 is the subset 
of auxiliary graph nodes. The main graph nodes represent the joints of the pipes. Each 
compressor station is indicated by two nodes, the input node and the output node. 

The set of graph edges is also divided: 

E = E l U E 2  (31) 

where El is the subset of pipes which supply compressor stations and E2 is the subset of 
other pipes. 

The algorithm for the simulation of transient gas flow in a network with compressor 
stations carries out the following actions for each interval At:  

(a) computes values of nodes pressure for vi E Vl using the bisection method 
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(b) computes values of pressure along each pipe for e, E Ez assuming that Pd = pset and 

(c) computes values of flow through each compressor station Q$T, using the following 
using the implicit numerical scheme characterized above, 

equation 

C&.= 389640D8/3 d( P:- P:'k+l' ) 
TsZ Ax 

where k is the number of the time level. (This means that the flow through a 
compressor is evaluated using the discharge pressure and the pressure at the adjacent 
discretization point along the discharge pipe.) 

(d) computes for ui E V, the values of suction pressure for the time level ( k  + 1) using the 
equation : 

where D, is the diameter of the suction pipe, Dd is the diameter of the discharge pipe, 
Ax, is the interval of discretization of the suction pipe, and Axd is the interval of 
discretization of the discharge pipe 

(e) computes values of pressure along the pipes for ei E E, .  

For simulation of a gas network with 21 nodes and 2 compressor stations, with a varying load 
in each node (Qt(L,  t) for t E [0,24 h]) and assuming N = 4, At = 600 s, the operation period 
was 3.5 s (CDC-7600). 

CONCLUSIONS 

The present work has resulted in the following advantages: 

(i) The model described above has been verified on the basis of measurement data 
obtained in a real gas transmission system. The experiments have shown that this 
model can be applied in a dispatching centre. 

(ii) A computer program is very fast and the accuracy is satisfactory for most applications 
even under large transient pertubations. 
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